ÌâÄ¿ÄÚÈÝ

ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ4£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒSn=n2+2n£®
£¨1£©ÇóÊýÁÐ{an}¼°{bn}µÄͨÏʽanºÍbn£»
£¨2£©f(n)=
n+3£¬nΪÕýÆæÊý
2n+1£¬nΪÕýżÊý
ÎÊÊÇ·ñ´æÔÚk¡ÊN*ʹf£¨k+27£©=4f£¨k£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽ
a
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
-
1
n-1+an+1
¡Ü0
ºã³ÉÁ¢£¬ÇóÕýÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©Ö±½ÓÀûÓõȲîÊýÁÐͨÏʽ´úÈëÊýÖµ¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¬¸ù¾ÝSnÓëanµÄ¹ÌÓйØϵan=
s1n=1
sn-sn-1n¡Ý2
Çó{bn}µÄͨÏʽ
£¨2£©Îª½«f£¨k+27£©=4f£¨k£©»¯¼ò£¬Ó¦·ÖkÊÇÕýÆæÊý¡¢ÕýżÊýÁ½ÖÖÇé¿ö·ÖÀ໯¼ò£®ÔÙÅжϽâµÄÇé¿ö£®
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)¡­(1+
1
bn
£©£®Éèg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
£©Ö»ÐèaСÓÚ»òµÈÓÚg£¨n£©µÄ×îСֵ¼´¿É£®¿¼Âǵ½g£¨n£©½âÎöʽÎÞ·¨½øÒ»²½»¯¼òÕûÀí£¬¹Ê¿ÉÒÔͨ¹ý×÷ÉÌ·¨Ñо¿Æäµ¥µ÷ÐÔ£¬Çó³ö×îСֵ£¬µÃ³öÕýÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©an=a1+£¨n-1£©d=4+n-1=n+3£®
µ±n=1ʱ£¬b1=S1=3£®
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=n2+2n-£¨n-1£©2-2£¨n-1£©=2n+1£®
µ±n=1ʱÉÏʽҲ³ÉÁ¢£¬
¡àbn=2n+1£¨n¡ÊN*£©£®
ËùÒÔan=n+3£¬bn=2n+1£®
£¨2£©¼ÙÉè·ûºÏÌõ¼þµÄk£¨k¡ÊN*£©´æÔÚ£¬
ÓÉÓÚf£¨n£©=
n+3£¬nΪÕýÆæÊý
2n+1£¬nΪÕýżÊý
¡àµ±kΪÕýÆæÊýʱ£¬k+27ΪÕýżÊý
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ2£¨k+27£©+1=4£¨k+3£©£®¡à2k=43£¬k=
43
2
£®£¨Éᣩ
µ±kΪÕýżÊýʱ£¬k+27ΪÕýÆæÊý£¬
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ£¨k+27£©+3=4£¨2k+1£©£®¼´7k=26£¬¡àk=
26
7
£®£¨Éᣩ
Òò´Ë£¬·ûºÏÌõ¼þµÄÕýÕûÊýk²»´æÔÚ
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)¡­(1+
1
bn
£©£®
Éèg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
£©£®¡à
g(n+1)
g(n)
=
2n+3
2n+5
(1+
1
bn+1
)=
2n+3
2n+5
¡Á
2n+4
2n+3
=
2n+4
2n+5
2n+3
£®
ÓÖ¡ß
(2n+5)(2n+3)
£¼
(2n+5)+(2n+3)
2
=2n+4£¬¡à
g(n+1)
g(n)
£¾1£¬¼´g£¨n+1£©£¾g£¨n£©£®¡àg£¨n£©ËænµÄÔö´ó¶øÔö´ó£¬¹Êg£¨n£©min=g£¨1£©=
1
5
(1+
1
3
)=
4
5
15
£®¡à0£¼a¡Ü
4
5
15
£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁС¢µÈ²îÊýÁÐͨÏʽÇó½â£¬·Ö¶Îº¯Êý֪ʶ¡¢ÊýÁеĺ¯ÊýÐÔÖÊ¡¢²»µÈʽºã³ÉÁ¢ÎÊÌ⣮¿¼²é·ÖÀàÌÖÂÛ¡¢·ÖÀà²ÎÊýµÄ˼ÏëÓë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø