ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ4£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒSn=n2+2n£®
£¨1£©ÇóÊýÁÐ{an}¼°{bn}µÄͨÏʽanºÍbn£»
£¨2£©f(n)=
ÎÊÊÇ·ñ´æÔÚk¡ÊN*ʹf£¨k+27£©=4f£¨k£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽ
-
¡Ü0ºã³ÉÁ¢£¬ÇóÕýÊýaµÄÈ¡Öµ·¶Î§£®
£¨1£©ÇóÊýÁÐ{an}¼°{bn}µÄͨÏʽanºÍbn£»
£¨2£©f(n)=
|
£¨3£©¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽ
a | ||||||
(1+
|
1 | ||
|
·ÖÎö£º£¨1£©Ö±½ÓÀûÓõȲîÊýÁÐͨÏʽ´úÈëÊýÖµ¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¬¸ù¾ÝSnÓëanµÄ¹ÌÓйØϵan=
Çó{bn}µÄͨÏʽ
£¨2£©Îª½«f£¨k+27£©=4f£¨k£©»¯¼ò£¬Ó¦·ÖkÊÇÕýÆæÊý¡¢ÕýżÊýÁ½ÖÖÇé¿ö·ÖÀ໯¼ò£®ÔÙÅжϽâµÄÇé¿ö£®
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
(1+
)(1+
)(1+
)¡(1+
£©£®Éèg£¨n£©=
(1+
)(1+
)¡(1+
£©Ö»ÐèaСÓÚ»òµÈÓÚg£¨n£©µÄ×îСֵ¼´¿É£®¿¼Âǵ½g£¨n£©½âÎöʽÎÞ·¨½øÒ»²½»¯¼òÕûÀí£¬¹Ê¿ÉÒÔͨ¹ý×÷ÉÌ·¨Ñо¿Æäµ¥µ÷ÐÔ£¬Çó³ö×îСֵ£¬µÃ³öÕýÊýaµÄÈ¡Öµ·¶Î§£®
|
£¨2£©Îª½«f£¨k+27£©=4f£¨k£©»¯¼ò£¬Ó¦·ÖkÊÇÕýÆæÊý¡¢ÕýżÊýÁ½ÖÖÇé¿ö·ÖÀ໯¼ò£®ÔÙÅжϽâµÄÇé¿ö£®
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
b3 |
1 |
bn |
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
½â´ð£º½â£º£¨1£©an=a1+£¨n-1£©d=4+n-1=n+3£®
µ±n=1ʱ£¬b1=S1=3£®
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=n2+2n-£¨n-1£©2-2£¨n-1£©=2n+1£®
µ±n=1ʱÉÏʽҲ³ÉÁ¢£¬
¡àbn=2n+1£¨n¡ÊN*£©£®
ËùÒÔan=n+3£¬bn=2n+1£®
£¨2£©¼ÙÉè·ûºÏÌõ¼þµÄk£¨k¡ÊN*£©´æÔÚ£¬
ÓÉÓÚf£¨n£©=
¡àµ±kΪÕýÆæÊýʱ£¬k+27ΪÕýżÊý
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ2£¨k+27£©+1=4£¨k+3£©£®¡à2k=43£¬k=
£®£¨Éᣩ
µ±kΪÕýżÊýʱ£¬k+27ΪÕýÆæÊý£¬
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ£¨k+27£©+3=4£¨2k+1£©£®¼´7k=26£¬¡àk=
£®£¨Éᣩ
Òò´Ë£¬·ûºÏÌõ¼þµÄÕýÕûÊýk²»´æÔÚ
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
(1+
)(1+
)(1+
)¡(1+
£©£®
Éèg£¨n£©=
(1+
)(1+
)¡(1+
£©£®¡à
=
(1+
)=
¡Á
=
£®
ÓÖ¡ß
£¼
=2n+4£¬¡à
£¾1£¬¼´g£¨n+1£©£¾g£¨n£©£®¡àg£¨n£©ËænµÄÔö´ó¶øÔö´ó£¬¹Êg£¨n£©min=g£¨1£©=
(1+
)=
£®¡à0£¼a¡Ü
£®
µ±n=1ʱ£¬b1=S1=3£®
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=n2+2n-£¨n-1£©2-2£¨n-1£©=2n+1£®
µ±n=1ʱÉÏʽҲ³ÉÁ¢£¬
¡àbn=2n+1£¨n¡ÊN*£©£®
ËùÒÔan=n+3£¬bn=2n+1£®
£¨2£©¼ÙÉè·ûºÏÌõ¼þµÄk£¨k¡ÊN*£©´æÔÚ£¬
ÓÉÓÚf£¨n£©=
|
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ2£¨k+27£©+1=4£¨k+3£©£®¡à2k=43£¬k=
43 |
2 |
µ±kΪÕýżÊýʱ£¬k+27ΪÕýÆæÊý£¬
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ£¨k+27£©+3=4£¨2k+1£©£®¼´7k=26£¬¡àk=
26 |
7 |
Òò´Ë£¬·ûºÏÌõ¼þµÄÕýÕûÊýk²»´æÔÚ
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
b3 |
1 |
bn |
Éèg£¨n£©=
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
g(n+1) |
g(n) |
| ||
|
1 |
bn+1 |
| ||
|
2n+4 |
2n+3 |
2n+4 | ||||
|
ÓÖ¡ß
(2n+5)(2n+3) |
(2n+5)+(2n+3) |
2 |
g(n+1) |
g(n) |
1 | ||
|
1 |
3 |
4
| ||
15 |
4
| ||
15 |
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁС¢µÈ²îÊýÁÐͨÏʽÇó½â£¬·Ö¶Îº¯Êý֪ʶ¡¢ÊýÁеĺ¯ÊýÐÔÖÊ¡¢²»µÈʽºã³ÉÁ¢ÎÊÌ⣮¿¼²é·ÖÀàÌÖÂÛ¡¢·ÖÀà²ÎÊýµÄ˼ÏëÓë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ1¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬°Ñ{an}ÖеÄÿһÏ¼õÈ¥2ºó£¬µÃµ½Ò»¸öÐÂÊýÁÐ{bn}£¬{bn}µÄÇ°nÏîºÍΪSn£¬¶ÔÈÎÒâµÄn¡ÊN*£¬ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢bn+1=3bn£¬ÇÒSn=
| ||
B¡¢bn+1=3bn-2£¬ÇÒSn=
| ||
C¡¢bn+1=3bn+4£¬ÇÒSn=
| ||
D¡¢bn+1=3bn-4£¬ÇÒSn=
|