题目内容
若实数a,b满足ab-4a-b+1=0 (a>1),则(a+1)(b+2)的最小值为分析:先根据ab-4a-b+1=0求得a和b的关系式,进而代入到(a+1)(b+2)利用均值不等式求得答案.
解答:解:∵ab-4a-b+1═0
∴b=
=4+
∴(a+1)(b+2)=6a+
+3
=6a+
+9
=6(a-1)+
+15
≥27(当且仅当a-1=
即a=2时等号成立)
故答案为27.
∴b=
4a-1 |
a-1 |
3 |
a-1 |
∴(a+1)(b+2)=6a+
6a |
a-1 |
=6a+
6 |
a-1 |
=6(a-1)+
6 |
a-1 |
≥27(当且仅当a-1=
1 |
a-1 |
故答案为27.
点评:本题主要考查了基本不等式在最值问题中的应用.解题的关键是配出均值不等式的形式.
练习册系列答案
相关题目