题目内容
已知椭圆:的短轴长为2,离心率为,设过右焦点的直线与椭圆交于不同的两点A,B,过A,B作直线的垂线AP,BQ,垂足分别为P,Q.记, 若直线l的斜率≥,则的取值范围为 .
.
【解析】
试题分析:根据已知条件求出椭圆C的方程,再由直线l过椭圆C的右焦点,设出直线l的方程,联系椭圆C和直线l的方程组,利用一元二次方程根与系数的关系能求出λ的取值范围.
考点:(1)直线与圆锥曲线的综合问题;(2)椭圆的应用.
练习册系列答案
相关题目
题目内容
已知椭圆:的短轴长为2,离心率为,设过右焦点的直线与椭圆交于不同的两点A,B,过A,B作直线的垂线AP,BQ,垂足分别为P,Q.记, 若直线l的斜率≥,则的取值范围为 .
.
【解析】
试题分析:根据已知条件求出椭圆C的方程,再由直线l过椭圆C的右焦点,设出直线l的方程,联系椭圆C和直线l的方程组,利用一元二次方程根与系数的关系能求出λ的取值范围.
考点:(1)直线与圆锥曲线的综合问题;(2)椭圆的应用.