题目内容
设正数数列{an}的前n项和是bn,数列{bn}的前n项之积是cn,且bn+cn=1(n∈N*),则{
}的前10项之和等于
1 | an |
440
440
.分析:由题意可得,a1=b1=c1=
,由bn+cn=1可得bn+1=bn+1(bn+cn)=bn+1bn+bn+1Cn=bn+1bn+cn+1=bnbn+1+1-bn+1即2bn+1-bnbn+1-1=0,则bn+1-1=bn+1(bn-1)=(bn-1)(bn+1-1+1)=(bn-1)(bn+1-1)+(bn-1),从而可得
=1+
,由等差数列的通项公式可得,
=-2+(n-1)×(-1)可求 bn=
,利用递推公式an=bn-bn-1可求an
1 |
2 |
1 |
bn-1 |
1 |
bn+1-1 |
1 |
bn-1 |
n |
n+1 |
解答:解:由题意可得,a1=b1=c1=
bn+cn=1
∴bn+1=bn+1(bn+cn)=bn+1bn+bn+1Cn
=bn+1bn+cn+1=bnbn+1+1-bn+1
∴2bn+1-bnbn+1-1=0
∴bn+1(2-bn)=1
∴0<bn<2
若bn+1=1则bn=1,bn-1=bn-2=…=b1=1与 b1=
矛盾
∴bn+1≠1
∴bn+1-1=bn+1(bn-1)
=(bn-1)(bn+1-1+1)
=(bn-1)(bn+1-1)+(bn-1)
∴
=1+
∴
-
=-1且
=-2
∴{
}是以-2为首项,以-1为公差的等差数列
由等差数列的通项公式可得,
=-2+(n-1)×(-1)=-n-1
∴bn=
∴an=bn-bn-1=
-
=
∴
=n(n+1)
所以{
}的前10项之和等于12+22+…+102+(1+2+3+…+10)=440
故答案为:440.
1 |
2 |
bn+cn=1
∴bn+1=bn+1(bn+cn)=bn+1bn+bn+1Cn
=bn+1bn+cn+1=bnbn+1+1-bn+1
∴2bn+1-bnbn+1-1=0
∴bn+1(2-bn)=1
∴0<bn<2
若bn+1=1则bn=1,bn-1=bn-2=…=b1=1与 b1=
1 |
2 |
∴bn+1≠1
∴bn+1-1=bn+1(bn-1)
=(bn-1)(bn+1-1+1)
=(bn-1)(bn+1-1)+(bn-1)
∴
1 |
bn-1 |
1 |
bn+1-1 |
∴
1 |
bn+1-1 |
1 |
bn-1 |
1 |
b1-1 |
∴{
1 |
bn-1 |
由等差数列的通项公式可得,
1 |
bn-1 |
∴bn=
n |
n+1 |
∴an=bn-bn-1=
n |
n+1 |
n-1 |
n |
1 |
n(n+1) |
∴
1 |
an |
所以{
1 |
an |
故答案为:440.
点评:本题目主要考查了利用数列的递推公式求解数列的通项,解题中的构造特殊的等差数列是解答本题的关键,对本题要求考生具备一定的逻辑退理的能力
练习册系列答案
相关题目