题目内容
已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则
(1)y=ax2+bx+c可以表示多少个不同的二次函数。
(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数。
(1)y=ax2+bx+c可以表示多少个不同的二次函数。
(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数。
解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数。
(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数。
(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数。
练习册系列答案
相关题目