题目内容
(本小题满分15分)
在△中,角、、的对边分别为、、,且满足.
(1)求角的大小;
20070316
(1); (2)
(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:.
(本小题满分15分).
已知、分别为椭圆:的
上、下焦点,其中也是抛物线:的焦点,
点是与在第二象限的交点,且。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。
如图已知,椭圆的左、右焦点分别为、,过的直线与椭圆相交于A、B两点。
(Ⅰ)若,且,求椭圆的离心率;
(Ⅱ)若求的最大值和最小值。
(本小题满分15分)若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数的取值范围.
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率