ÌâÄ¿ÄÚÈÝ
£¨2011•½Î÷Ä£Ä⣩ÒÑÖªº¯Êýf£¨x£©=ax-lnx+1£¨a¡ÊR£©£¬g£¨x£©=xe1-x£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓò£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄx0¡Ê£¨0£¬e]£¬ÔÚÇø¼ä[1£¬e]É϶¼´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=g£¨x0£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©¸ø³öÈç϶¨Ò壺¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉÏÈÎÒⲻͬµÄÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Èç¹û¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉϵĵãM£¨x0£¬y0£©£¨ÆäÖÐx0=
)×ÜÄÜʹµÃF£¨x1£©-F£¨x2£©=F'£¨x0£©£¨x1-x2£©³ÉÁ¢£¬Ôò³Æº¯Êý¾ß±¸ÐÔÖÊ¡°L¡±£¬ÊÔÅжϺ¯Êýf£¨x£©ÊDz»ÊǾ߱¸ÐÔÖÊ¡°L¡±£¬²¢ËµÃ÷ÀíÓÉ£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓò£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄx0¡Ê£¨0£¬e]£¬ÔÚÇø¼ä[1£¬e]É϶¼´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=g£¨x0£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©¸ø³öÈç϶¨Ò壺¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉÏÈÎÒⲻͬµÄÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Èç¹û¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉϵĵãM£¨x0£¬y0£©£¨ÆäÖÐx0=
x1+x2 | 2 |
·ÖÎö£º£¨1£©ÏÈÇ󵼺¯Êýg'£¨x£©=e1-x1xe1-x=ex-1£¨1-x£©£¬´Ó¶ø¿ÉÖªº¯ÊýÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬Òò´Ë¿ÉÇóº¯ÊýµÄÖµÓò£®
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]£¬f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬´Ó¶ø¿ÉµÃa¡Ê(
£¬1)£¬ÓÖf(x)min=f(
)=2+lna¡Ü0¿ÉµÃa¡Ü
£¬Ã¬¶Ü£¬Òò´ËÂú×ãÌõ¼þµÄa²»´æÔÚ
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬Ò×µÃ
=
¼´ln
=
=
£¬Áît=
¡Ê(0£¬1)£¬ÔòÓÐlnt+
-2=0£¬ÁîF£¨t£©=lnt+
-2£¬ÔòÓÉF¡ä(t)=
-
=
£¾0¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬¹ÊF£¨t£©£¼F£¨1£©=0£¬´Ó¶ø·½³Ìlnt+
-2=0Î޽⣬¹Ê¿ÉµÃÖ¤£®
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]£¬f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬´Ó¶ø¿ÉµÃa¡Ê(
1 |
e |
1 |
a |
1 |
e2 |
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬Ò×µÃ
lnx1-lnx2 |
x1-x2 |
2 |
x1+x2 |
x1 |
x2 |
2(x1-x2) |
x1+x2 |
2(
| ||
|
x1 |
x2 |
4 |
t+1 |
4 |
t+1 |
1 |
t |
4 |
(t+1)2 |
(t-1)2 |
t(t+1) |
4 |
t+1 |
½â´ð£º½â£º£¨1£©¡ßg'£¨x£©=e1-x1xe1-x=ex-1£¨1-x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e2-eº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓòΪ£¨0£¬1]¡£®£¨3·Ö£©
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý ¡£¨5·Ö£©¡ßf¡ä(x)=a-
(1¡Üx¡Üe)
µ±a¡Ü0ʱ£¬f¡ä(x)=a-
£¼0£¬ÔÚÇø¼ä[1£¬e]Éϵݼõ£¬²»ºÏÌâÒâ
µ±a¡Ý1ʱ£¬f'£¨x£©£¾0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒâ
µ±0£¼a¡Ü
ʱ£¬f'£¨x£©£¼0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒâ
µ±1£¼
£¼e¼´
£¼a£¼1ʱ£¬ÔÚÇø¼ä[1£¬
]Éϵ¥µ÷µÝ¼õ£»ÔÚÇø¼ä[
£¬e]Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê(
£¬1)£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬¶øÓÉf(x)min=f(
)=2+lna¡Ü0¿ÉµÃa¡Ü
£¬Ôòa¡Ê¦µ
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®¡..£¨8·Ö£©
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬ÔòkAB=
=
=a-
£¬¶øf£¨x£©ÔÚµãM´¦µÄÇÐÏßбÂÊΪf¡ä(x0)=f¡ä(
)=a-
£¬¹ÊÓÐ
=
¡..£¨10·Ö£©
¼´ln
=
=
£¬Áît=
¡Ê(0£¬1)£¬ÔòÉÏʽ»¯Îªlnt+
-2=0£¬
ÁîF£¨t£©=lnt+
-2£¬ÔòÓÉF¡ä(t)=
-
=
£¾0¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
-2=0Î޽⣬ËùÒÔº¯Êýf£¨x£©²»¾ß±¸ÐÔÖÊ¡°L¡±£®¡£¨14·Ö£©
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý ¡£¨5·Ö£©¡ßf¡ä(x)=a-
1 |
x |
µ±a¡Ü0ʱ£¬f¡ä(x)=a-
1 |
x |
µ±a¡Ý1ʱ£¬f'£¨x£©£¾0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒâ
µ±0£¼a¡Ü
1 |
e |
µ±1£¼
1 |
a |
1 |
e |
1 |
a |
1 |
a |
ÓÉÉϿɵÃa¡Ê(
1 |
e |
1 |
a |
1 |
e2 |
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®¡..£¨8·Ö£©
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬ÔòkAB=
y1-y2 |
x1-x2 |
a(x1-x2)-(lnx1-lnx2) |
x1-x2 |
lnx1-lnx2 |
x1-x2 |
x1+x2 |
2 |
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1+x2 |
¼´ln
x1 |
x2 |
2(x1-x2) |
x1+x2 |
2(
| ||
|
x1 |
x2 |
4 |
t+1 |
ÁîF£¨t£©=lnt+
4 |
t+1 |
1 |
t |
4 |
(t+1)2 |
(t-1)2 |
t(t+1) |
4 |
t+1 |
µãÆÀ£º´ËÌâÊǸöÄÑÌ⣮¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬ºÍÇóº¯ÊýµÄ×îÖµÎÊÌ⣬ÌåÏÖÁË·ÖÀàÌÖÂÛºÍÊýÐνáºÏÒÔ¼°ÌâÒâµÄÀí½âÓëת»¯µÄ˼Ï룮ÌرðÊÇÎÊÌ⣨2£©µÄÉèÖ㬿¼²éÁËѧÉú´´ÔìÐÔ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿