题目内容
若函数f(x)=则f(f(0))=________.
0
【解析】f(0)=30=1,f(f(0))=f(1)=log21=0.
作函数的y=图象;
判断函数f(x)=ex+在区间(0,+∞)上的单调性.
求函数y=的定义域;
集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},则下列函数(a、b、c、k都是常数):
① y=kx+b(k≠0,b≠0);② y=ax2+bx+c(a≠0);
③ y=ax(0<a<1);④ y=(k≠0);⑤ y=sinx.
其中属于集合M的函数是________.(填序号)
判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.
若奇函数f(x)与偶函数g(x)满足f(x)+g(x)=2x,则函数g(x)的最小值是________.
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)).
(1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);
(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.
函数f(x)=x3-15x2-33x+6的单调减区间为______________.