题目内容
设函数,则下列结论正确的是 ( )
A.把的图象向左平移个单位,得到一个偶函数的图象 |
B.的图象关于点对称 |
C.的图象关于直线对称 |
D.的最小正周期为,且在上为增函数 |
A
试题分析:根据正弦函数的性质可知f(x)=sin(2x+)的对称轴为2x+=kπ+(k∈Z),即x=+(k∈Z)∴直线x=不是函数f(x)的对称轴,结论(3)错误
根据正弦函数的性质可知f(x)=sin(2x+)的对称中心横坐标为2x+=kπ,即x=-,∴点(,0)不是函数的对称中心.结论(2)错误.
f(x)的图象向左平移个单位,得f(x)=sin(2x+)
)=cos2x,为偶函数,∴结论(1)正确.
f(x)的最小正周期为π,且2kπ-≤2x+≤2kπ+时,即kπ-≤x≤kπ+
函数单调增,∴结论(4)不正确.故答案为A
点评:解决该试题的关键是利用正弦函数的单调性,对称性和三角函数图象的平移法则,对四个结论逐一验证,答案可得.
练习册系列答案
相关题目