题目内容
已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(Ⅰ)设Sk=2550,求a和k的值;
(Ⅱ)设bn=
Sn | n |
分析:(Ⅰ)由等差数列的前三项可求该数列的首项a1、公差d,再由等差数列的前n 项和公式算出Sn,进一步得Sk=2550,解出k的值
(Ⅱ)由(Ⅰ)可知数列{bn}为等差数列,利用等差数列的前n项公式求值.
(Ⅱ)由(Ⅰ)可知数列{bn}为等差数列,利用等差数列的前n项公式求值.
解答:解:(Ⅰ)由已知得a1=a-1,a2=4,a3=2a,又a1+a3=2a2,
∴(a-1)+2a=8,即a=3.(2分)
∴a1=2,公差d=a2-a1=2.
由Sk=ka1+
d,得(4分)
2k+
×2=2550
即k2+k-2550=0.解得k=50或k=-51(舍去).
∴a=3,k=50.(6分)
(Ⅱ)由Sn=na1+
,得
Sn=2n+
×2=n2+n(8分)
∴bn=
=n+1(9分)
∴{bn}是等差数列.
则b3+b7+b11+…+b4n-1=(3+1)+(7+1)+(11+1)+…+(4n-1+1)
=(3+7+11+…+4n-1)+n
=
+n
=
+n(11分)
∴b3+b7+b11+…+b4n-1=2n2+2n(12分)
∴(a-1)+2a=8,即a=3.(2分)
∴a1=2,公差d=a2-a1=2.
由Sk=ka1+
k(k-1) |
2 |
2k+
k(k-1) |
2 |
即k2+k-2550=0.解得k=50或k=-51(舍去).
∴a=3,k=50.(6分)
(Ⅱ)由Sn=na1+
n(n-1)d |
2 |
Sn=2n+
n(n-1) |
2 |
∴bn=
Sn |
n |
∴{bn}是等差数列.
则b3+b7+b11+…+b4n-1=(3+1)+(7+1)+(11+1)+…+(4n-1+1)
=(3+7+11+…+4n-1)+n
=
(3+4n-1)n |
2 |
=
(4n+2)n |
2 |
∴b3+b7+b11+…+b4n-1=2n2+2n(12分)
点评:本题主要考查等差数列的通项公式及前n和公式,考查基本运算.
练习册系列答案
相关题目