题目内容

( 不等式选讲)不等式(x-1)|x+2|≥0的解集为
[1,+∞)∪{-2}
[1,+∞)∪{-2}
分析:由不等式(x-1)|x+2|≥0可得 ①
x≥-2
(x-1)(x+2)≥0
,或②
x<-2
(x-1)(-x-2)≥0
.分别求得①和②的解集,
再取并集,即得所求.
解答:解:由不等式(x-1)|x+2|≥0可得 ①
x≥-2
(x-1)(x+2)≥0
,或②
x<-2
(x-1)(-x-2)≥0

解①可得 x≥1,或x=-2,解②可得x∈∅.
综上,不等式的解集为[1,+∞)∪{-2},
故答案为[1,+∞)∪{-2}.
点评:本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网