题目内容
已知对任意正整数n都有a1+a2+…+an=n3,则
+
+…+
=
.
1 |
a2-1 |
1 |
a3-1 |
1 |
a100-1 |
33 |
100 |
33 |
100 |
分析:首先由a1+a2+a3+…+an=n3,求得a2、a3、a4与a5的值,观察得到规律为:an=3n(n-1)+1,即可求得a100的值,代入
+
+…+
,再提取公因式
,由
=
-
,即可求得结果.
1 |
a2-1 |
1 |
a3-1 |
1 |
a100-1 |
1 |
3 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
解答:解:∵a1+a2+a3+…+an=n3,
∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,
∴a2=7,a3=19,a4=37,a5=61,an=3n(n-1)+1,
∴a100=3×100×99+1,
∴
+
+…+
=
+
+
+
+…+
,
=
(
+
+
+
+…+
),
=
(1-
+
-
+
-
+
-
+…+
-
),
=
(1-
),
=
.
故答案为:
∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,
∴a2=7,a3=19,a4=37,a5=61,an=3n(n-1)+1,
∴a100=3×100×99+1,
∴
1 |
a2-1 |
1 |
a3-1 |
1 |
a100-1 |
1 |
6 |
1 |
18 |
1 |
36 |
1 |
60 |
1 |
3×100×99 |
=
1 |
3 |
1 |
2 |
1 |
6 |
1 |
12 |
1 |
20 |
1 |
100×99 |
=
1 |
3 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
99 |
1 |
100 |
=
1 |
3 |
1 |
100 |
=
33 |
100 |
故答案为:
33 |
100 |
点评:本题主要考查了规律性问题,考查了学生的观察归纳能力.注意此题找到规律an=3n(n-1)+1与
=
-
是解题的关键,属于中档题.
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
练习册系列答案
相关题目