题目内容
(本小题满分13分)
一个口袋中有2个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖。
(1)试用含的代数式表示一次摸球中奖的概率P;
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当为何值时,最大。
(本小题满分13分)
解:(1)一次摸球从个球中任选两个,有种选法,其中两球颜色相同有种选法;一次摸球中奖的概率
(2)若,则一次摸球中奖的概率是,三次摸球是独立重复实验,三次摸球中恰有一次中奖的概率是
(3)设一次摸球中奖的概率是,则三次摸球中恰有一次中奖的概率是,,
在是增函数,在是减函数,
当时,取最大值
,
,故时,三次摸球中恰有一次中奖的概率最大。
练习册系列答案
相关题目