题目内容

已知圆A:(x+2)2+y2=32,圆P过定点B(2,0)且与圆A内切.
(1)求圆心P的轨迹方程C;
(2)过Q(0,3)作直线l交P的轨迹C于M、N两点,O为原点.当△MON面积最大时,求此时直线l的斜率.
(1)由题意,两圆相内切,故|PA|=4
2
-|PB|,即|PA|+|PB|=4
2

又∵AB=4<4
2

∴动圆的圆心P的轨迹为以A、B为焦点,长轴长为4
2
的椭圆.
动点P的轨迹方程为
x2
8
+
y2
4
=1

(2)设M(x1,y1),N(x2,y2),l:x=m(y-3),直线与x轴的交点为A(-3m,0)
S△MON=
1
2
|OA|•|y1-y2|
把x=m(y-3),代入椭圆方程,得m2(y-3)2+2y2-8=0,
即(m2+2)y2-6m2y-8+9m2=0,△=64-40m2>0,?m2
8
5

y1+y2=
6m2
m2+2
,y1y2=
9m2-8
m2+2

|y1-y2|=
(
6m2
m2+2
)2-4×
9m2-8
m2+2
=
64-40m2
m2+2

∴S△AOB=
1
2
|3m|
64-40m2
m2+2
=3
16m2-10m4
(m2+2)2
=3
-10+
56
m2+2
-
72
(m2+2)2
,令t=
1
m2+2

所以S△AOB=3
-72t2+56t-10
2
3
,当t=
7
18
时,即m2=
4
7
8
5
时面积取得最大值.
此时直线的斜率为:
1
m
7
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网