题目内容

用秦九韶算法计算f(x)=3x4+2x2+x+4,当x=10时的值的过程中,v1的值为(  )
分析:首先把一个n次多项式f(x)写成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V1的值.
解答:解:把一个n次多项式f(x)=a[n]xn+a[n-1]x(n-1)+…+a[1]x+a[0]改写成如下形式:
f(x)=a[n]xn+a[n-1]x(n-1))+…+a[1]x+a[0]
=(a[n]x(n-1)+a[n-1]x(n-2)+…+a[1])x+a[0]
=((a[n]x(n-2)+a[n-1]x(n-3)+…+a[2])x+a[1])x+a[0]
=…
=(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]=3×10=3
0故选A.
点评:本题考查,把实际问题通过数学上的算法,写成程序,然后求解,属于简单题,本题解题的关键是注意次数之间是不是挨着.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网