ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪe=
£¬ÒÔÔµãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+2=0ÏàÇУ¬A£®B·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬PΪÍÖÔ²CÉϵĶ¯µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôPÓëA¡¢B¾ù²»Öغϣ¬ÉèÖ±ÏßPAÓëPBµÄбÂÊ·Ö±ðΪk1¡¢k2£¬Ö¤Ã÷£ºk1•k2Ϊ¶¨Öµ£»
£¨3£©ÈôMΪ¹ýPÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÉϵĵ㣬ÇÒ
=2£¬ÇóµãMµÄ¹ì¼£·½³Ì£®
x2 |
a2 |
y2 |
b2 |
| ||
3 |
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôPÓëA¡¢B¾ù²»Öغϣ¬ÉèÖ±ÏßPAÓëPBµÄбÂÊ·Ö±ðΪk1¡¢k2£¬Ö¤Ã÷£ºk1•k2Ϊ¶¨Öµ£»
£¨3£©ÈôMΪ¹ýPÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÉϵĵ㣬ÇÒ
|OP| |
|OM| |
·ÖÎö£º£¨1£©Ð´³öÔ²µÄ·½³Ì£¬ÀûÓÃÖ±ÏßÓëÔ²ÏàÇеijäÒªÌõ¼þÁгö·½³ÌÇó³öbµÄÖµ£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½µÃµ½a£¬cµÄ¹Øϵ£¬ÔÙÀûÓÃÍÖÔ²±¾ÉíÈý¸ö²ÎÊýµÄ¹ØϵÇó³öa£¬cµÄÖµ£¬´Ó¶ø¿ÉµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©Éè³öPµÄ×ø±ê£¬½«Æä´úÈëÍÖÔ²µÄ·½³ÌµÃµ½PµÄ×ø±êµÄ¹Øϵ£¬Ð´³öA£¬BµÄ×ø±ê£¬ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ök1£¬k2£¬½«PµÄ×ø±êµÄ¹Øϵ´úÈëk1k2»¯¼òÇó³öÆäÖµ£®
£¨3£©Éè³öMµÄ×ø±ê£¬Çó³öPµÄ×ø±ê£¬ÀûÓÃÁ½µãµÄ¾àÀ빫ʽ½«ÒÑÖªµÄ¼¸ºÎÌõ¼þÓÃ×ø±ê±íʾ£¬»¯¼ò¼´¿ÉÇóµãMµÄ¹ì¼£·½³Ì£®
£¨2£©Éè³öPµÄ×ø±ê£¬½«Æä´úÈëÍÖÔ²µÄ·½³ÌµÃµ½PµÄ×ø±êµÄ¹Øϵ£¬Ð´³öA£¬BµÄ×ø±ê£¬ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ök1£¬k2£¬½«PµÄ×ø±êµÄ¹Øϵ´úÈëk1k2»¯¼òÇó³öÆäÖµ£®
£¨3£©Éè³öMµÄ×ø±ê£¬Çó³öPµÄ×ø±ê£¬ÀûÓÃÁ½µãµÄ¾àÀ빫ʽ½«ÒÑÖªµÄ¼¸ºÎÌõ¼þÓÃ×ø±ê±íʾ£¬»¯¼ò¼´¿ÉÇóµãMµÄ¹ì¼£·½³Ì£®
½â´ð£º£¨1£©½â£ºÓÉÌâÒâ¿ÉµÃÔ²µÄ·½³ÌΪx2+y2=b2£¬
¡ßÖ±Ïßx-y+2=0ÓëÔ²ÏàÇУ¬
¡àd=
=b£¬¼´b=
£¬
ÓÖe=
=
£¬¼´a=
c£¬
¡ßa2=b2+c2£¬
¡àa=
£¬c=1£¬
¡àÍÖÔ²·½³ÌΪ
+
=1£»
£¨2£©Ö¤Ã÷£ºÉèP£¨x0£¬y0£©£¨y0¡Ù0£©£¬A£¨-
£¬0£©£¬B£¨
£¬0£©£¬
¡àk1=
£¬k2=
¡ß
+
=1£¬¡ày02=2-
£¬
¡àk1•k2=
=
=-
£»
£¨3£©½â£ºÉèM£¨x£¬y£©£¬ÆäÖÐx¡Ê[-
£¬
]£®
ÓÉÒÑÖª
=2¼°µãPÔÚÍÖÔ²CÉϿɵÃ
=4
ÕûÀíµÃ
+
=1£¬ÆäÖÐx¡Ê[-
£¬
]£®
¡ßÖ±Ïßx-y+2=0ÓëÔ²ÏàÇУ¬
¡àd=
2 | ||
|
2 |
ÓÖe=
c |
a |
| ||
3 |
3 |
¡ßa2=b2+c2£¬
¡àa=
3 |
¡àÍÖÔ²·½³ÌΪ
x2 |
3 |
y2 |
2 |
£¨2£©Ö¤Ã÷£ºÉèP£¨x0£¬y0£©£¨y0¡Ù0£©£¬A£¨-
3 |
3 |
¡àk1=
y0 | ||
x0+
|
y0 | ||
x0-
|
¡ß
x02 |
3 |
y02 |
2 |
2x02 |
3 |
¡àk1•k2=
y02 | ||
x02-(
|
2-
| ||
x02-(
|
2 |
3 |
£¨3£©½â£ºÉèM£¨x£¬y£©£¬ÆäÖÐx¡Ê[-
3 |
3 |
ÓÉÒÑÖª
|OP| |
|OM| |
x2+2-
| ||
x2+y2 |
ÕûÀíµÃ
x2 | ||
|
y2 |
2 |
3 |
3 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßµÄбÂÊ£¬¿¼²é¹ì¼£·½³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿