题目内容
(本小题满分12分)
如图,在三棱锥D-ABC中,已知△BCD是正三角
形,AB⊥平面BCD,AB=BC=a,E为BC的中点,
F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,
使MN∥平面DEF?若存在,说明点N的位置;若不
存在,试说明理由.
【答案】
解(证明)(1)因为 AB⊥平面BCD,所以 AB⊥BC,AB⊥BD.
因为 △BCD是正三角形,且AB=BC=a,所以 AD=AC=.
设G为CD的中点,则CG=,AG=.
所以 ,,.
三棱锥D-ABC的表面积为
(2)取AC的中点H,因为 AB=BC,所以 BH⊥AC.
因为 AF=3FC,所以 F为CH的中点.
因为 E为BC的中点,所以 EF∥BH.则EF⊥AC.
因为 △BCD是正三角形,所以 DE⊥BC.
因为 AB⊥平面BCD,所以 AB⊥DE.
因为 AB∩BC=B,所以 DE⊥平面ABC.所以 DE⊥AC.
因为 DE∩EF=E,所以 AC⊥平面DEF
(3)存在这样的点N,
当CN=时,MN∥平面DEF.
连CM,设CM∩DE=O,连OF.
由条件知,O为△BCD的重心,CO=CM.
所以 当CF=CN时,MN∥OF.所以 CN=
【解析】略
练习册系列答案
相关题目