ÌâÄ¿ÄÚÈÝ

ÒÑÖªP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©ÊǺ¯Êýf(x)=
2x
2x+
2
ͼÏóÉϵÄÁ½µã£¬ÇÒ
OP
=
1
2
(
OP1
+
OP2
)
£¬µãP¡¢A¡¢B¹²Ïߣ¬ÇÒ
CP
=x1
CA
+x2
CB

£¨1£©ÇóPµã×ø±ê
£¨2£©ÈôS2011=
2010
i=1
f(
i
2011
)
£¬ÇóS2011
£¨3£©ÈôSn=
n
i=1
f(
i
n
)
£¬¼ÇTnΪÊýÁÐ{
1
(Sn+
2
)(Sn+1+
2
)
}
Ç°nÏîµÄºÍ£¬ÈôTn£¼a(Sn+1+
2
)
ʱ£¬¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÓÉP£®A£®B¹²ÏßÇÒ
CP
=x1
CA
+x2
CB
£¬¿ÉÇóx1+x2=1£¬½áºÏÒÑÖªº¯Êý½âÎöʽ¿ÉÑ°Çóf£¨x£©Óëf£¨1-x£©µÄº¯ÊýÖµµÄ¹Øϵ£¬´Ó¶ø¿ÉÇóP
£¨2£©½áºÏ£¨1£©ÖÐf£¨x£©Óëf£¨1-x£©µÄºÍµÄ¹Øϵ£¬ÀûÓõ¹ÐòÏà¼ÓÇóºÍ¼´¿ÉÇó½â
£¨3£©ÀûÓõ¹ÐòÏà¼Ó¿ÉÇóSn£¬´úÈëÖ®ºóÀûÓÃÁÑÏîÏà¼Ó¿ÉÇóTn£¬½ø¶ø¿ÉÇóaµÄ·¶Î§
½â´ð£º½â£¨1£©¡ßP£®A£®B¹²ÏßÇÒ
CP
=x1
CA
+x2
CB
£¬
¡àx1+x2=1
ÓÖ¡ßf(x)+f(1-x)=
2x
2x+
2
+
21-x
21-x+
2
=
2x
2x+
2
+
2
2x+
2
=1

¡àP(
1
2
£¬
1
2
)

£¨2£©S2011=
2010
i=1
f(
i
2011
)=f(
1
2011
)+f(
2
2011
)+¡­+f(
2009
2011
)+f(
2010
2011
)

¡àS2011=f(
2010
2011
)+f(
2009
2011
)+¡­f(
2
2011
)+f(
1
2011
)

¡à2S2011=2010⇒S2011=1005
£¨3£©Sn=
n
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+¡­f(
n-1
n
)+f(1)

¡àSn=f(1)+f(
n-1
n
)+¡­f(
2
n
)+f(
1
n
)

¡àSn=
n+3
2
-
2

Áîbn=
1
(Sn+
2
)(Sn+1+
2
)
=
4
(n+3)(n+4)

¡àTn=
2n
n+2
£¬
2n
n+2
£¼a
n+2
2
⇒a£¾
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4

¡àa£¾
1
8
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÏòÁ¿»ù±¾¶¨ÀíµÄÓ¦Óü°µ¹ÐòÏà¼Ó¡¢ÁÑÏîÇóºÍ·½·¨µÄÓ¦Óã¬ÌåÏÖÁËÊýÁÐÓ뺯Êý֪ʶµÄ×ÛºÏÓ¦ÓÃ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø