题目内容

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,cosωx),ω>0
,记函数f(x)=
a
b

若函数f(x)的最小正周期为π.
(1)求ω的值;
(2)当0<x≤
π
3
时,试求f(x)的值域;
(3)求f(x)在[0,π]上的单调递增区间.
分析:(1)可利用向量的坐标运算公式结合正弦与余弦的二倍角公式求得f(x)=
a
b
=sin(2ωx+
π
6
)+
1
2
,由最小正周期为π即可求得ω的值;
(2)0<x≤
π
3
⇒2x+
π
6
∈(
π
6
6
)⇒
1
2
≤sin(2x+
π
6
)≤1,f(x)的值域可求得;
(3)2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z
kπ-
π
3
≤x≤kπ+
π
6
,k∈Z
,令k取特值0,1即可求得f(x)在[0,π]上的单调递增区间.
解答:解:(1)f(x)=
3
sinωxcosωx+cos2ωx=
3
2
sin2ωx+
1+cos2ωx
2
=sin(2ωx+
π
6
)+
1
2
…(3分)
∵ω>0,∴T=
,∴ω=1…(4分)
(2)由(1),f(x)=sin(2x+
π
6
)+
1
2

0<x≤
π
3

π
6
<2x+
π
6
6

1
2
≤sin(2x+
π
6
)≤1

∴f(x)的值域为[1,
3
2
]
…(8分)
(3)由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z

kπ-
π
3
≤x≤kπ+
π
6
,k∈Z
…(10分)
又∵x∈[0,π],∴0≤x≤
π
6
,或
3
≤x≤π

∴f(x)在[0,π]上的单调递增区间为[0,
π
6
],[
3
,π]
…(12分)
点评:本题考查平面向量数量积的运算,正弦函数的定义域和值域及正弦函数的单调性,着重考查正弦函数的图象与性质的综合应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网