题目内容

已知U=R,集合A={x|x2-3x-4≥0},B={x|x2-2ax+a+2=0}.若(?UA)∪B=?UA,求实数a的取值范围.
分析:通过已知条件求出集合A的补集,利用(?UA)∪B=?UA,推出a的不等式求出a的范围即可.
解答:解:集合A={x|x2-3x-4≥0},所以?UA={x|x2-3x-4≤0}={x|-1≤x≤4},
(?UA)∪B=?UA,所以B??UA,
(-1)2+2a+a+2≥0
42-8a+a+2≥0
-1≤a≤4

解得-1≤a≤
18
7

实数a的取值范围[-1,
18
7
].
点评:本题考查集合的基本运算,二次函数根的分布,函数与方程的综合应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网