题目内容

已知为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.
(1)求数列的通项公式:
(2)设,求数列{}的前n项和Tn
(1);(Ⅱ).

试题分析:(1)设在等比数列中,公比为,
根据因为成等差数列.建立的方程.
(Ⅱ)由(I)可得.从其结构上不难看出,应用“错位相减法”求和.
此类问题的解答,要特别注意和式中的“项数”.
试题解析:(1)设在等比数列中,公比为,
因为成等差数列.
所以                            2分

解得                                        4分
所以                                   6分
(Ⅱ).


②           8分
①—②,得


                                              10分
所以                                        12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网