题目内容
设f(x)是定义域为(-∞,0)∪(0,+∞)上的奇函数且在(-∞,0)上为增函数.
(1)若m·n<0,m+n≤0,求证:f(m)+f(n)≤0;
(2)若f(1)=0,解关于x的不等式f(x2-2x-2)>0.
(1)证明见解析(2) 不等式的解集为(-∞,-1)∪(1-,1-)∪(1+,1+)∪(3,+∞)
解析:
(1)证明 ∵m·n<0,m+n≤0,∴m、n一正一负.
不妨设m>0,n<0,则n≤-m<0.取n=-m<0,
∵函数f(x)在(-∞,0)上为增函数,
则f(n)=f(-m);取n<-m<0,同理
f(n)<f(-m)∴f(n)≤f(-m).
又函数f(x)在(-∞,0)∪(0,+∞)上为奇函数,
∴f(-m)=-f(m).∴f(n)+f(m)≤0.
(2)解 ∵f(1)=0,f(x)在(-∞,0)∪(0,+∞)上为奇函数,∴f(-1)=0,
∴原不等式可化为或.
易证:f(x)在(0,+∞)上为增函数.
∴或.
∴x2-2x-3>0或.
解得x>3或x<-1或.
∴不等式的解集为(-∞,-1)∪(1-,1-)∪(1+,1+)∪(3,+∞).
练习册系列答案
相关题目