题目内容

设f(x)是定义域为(-∞,0)∪(0,+∞)上的奇函数且在(-∞,0)上为增函数.

(1)若m·n<0,m+n≤0,求证:f(m)+f(n)≤0;

(2)若f(1)=0,解关于x的不等式f(x2-2x-2)>0.

(1)证明见解析(2) 不等式的解集为(-∞,-1)∪(1-,1-)∪(1+,1+)∪(3,+∞)


解析:

(1)证明  ∵m·n<0,m+n≤0,∴m、n一正一负.

不妨设m>0,n<0,则n≤-m<0.取n=-m<0,

∵函数f(x)在(-∞,0)上为增函数,

则f(n)=f(-m);取n<-m<0,同理

f(n)<f(-m)∴f(n)≤f(-m).

又函数f(x)在(-∞,0)∪(0,+∞)上为奇函数,

∴f(-m)=-f(m).∴f(n)+f(m)≤0.

(2)解  ∵f(1)=0,f(x)在(-∞,0)∪(0,+∞)上为奇函数,∴f(-1)=0,

∴原不等式可化为.

易证:f(x)在(0,+∞)上为增函数.

.

∴x2-2x-3>0或.

解得x>3或x<-1或.

∴不等式的解集为(-∞,-1)∪(1-,1-)∪(1+,1+)∪(3,+∞).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网