题目内容

若点P在以F1,F2为焦点的椭圆上,PF2⊥F1F2tan∠PF1F2=
3
4
,则椭圆的离心率为
1
2
1
2
分析:在Rt△PF1F2中,F1F2=2c为焦距,利用正切的定义结合tan∠PF1F2=
3
4
,可得PF2=
3
2
c,再由勾股定理算出PF1=
5
2
c,根据椭圆的定义得2a=PF1+PF2=4c,最后根据离心率的计算公式,可以算出该椭圆的离心率.
解答:解:∵PF2⊥F1F2tan∠PF1F2=
3
4

PF2
F1F2
=
3
4
,结合F1F2=2c为焦距,可得PF2=
3
2
c
因此,根据勾股定理可得PF1=
PF22+F1F12
=
5
2
c
∴根据椭圆的定义,得椭圆的长轴2a=PF1+PF2=
3
2
c+
5
2
c=4c
由此可得椭圆的离心率为e=
c
a
=
2c
2a
=
2c
4c
=
1
2

故答案为:
1
2
点评:本题根据椭圆的焦距与椭圆上一点构成直角三角形,在已知一个角正切的基础之上求椭圆的离心率,着重考查了直角三角形的性质和椭圆的基本概念,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网