题目内容
已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(λ+1)yn+λyn-1≥0(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明xn+1-yn+1≤xn-yn(n∈N*);
(3)设0<λ<1,k∈N*,证明:(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk)<
(k∈N*).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明xn+1-yn+1≤xn-yn(n∈N*);
(3)设0<λ<1,k∈N*,证明:(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk)<
1 | (1-λ)2 |
分析:(1)利用x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,即可得到x3,x4,x5,再利用等比数列的定义即可得出λ的值;
(2)利用数学归纳法证明即可;
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),即xn-xn-1=(x2-x1)•λn-2=λn-2,利用“累加求和”可得xn,再利用等比数列的前n项和公式即可得出不等式的左边,进而证明小于右边.
(2)利用数学归纳法证明即可;
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),即xn-xn-1=(x2-x1)•λn-2=λn-2,利用“累加求和”可得xn,再利用等比数列的前n项和公式即可得出不等式的左边,进而证明小于右边.
解答:解:(1)∵x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,
∴x3=(λ+1)x2-λx1=2(λ+1)-λ=λ+2.
x4=(λ+1)(λ+2)-2λ=λ2+λ+2.
x5=(λ+1)(λ2+λ+2)-λ(λ+2)=λ3+λ2+λ+2.
∵x1,x3,x5成等比数列,∴
=x1•x5,
∴(λ+2)2=1×(λ2+λ+2),解得λ=-2.
(2)下面利用数学归纳法证明:
①当n=1时,x2-x1=2-1=y2-y1,∴x2-y2≤x1-y1成立;
②假设当n=k时,xk+1-xk≤yk+1-yk成立,即xk+1-yk+1≤xk-yk成立.
则当n=k+1时,∵λ>0,∴xk+2-xk+1=λ(xk+1-xk)≤λ(yk+1-yk)≤yk+2-yk+1成立,
即xk+2-yk+2≤xk+1-yk+1成立.
即命题定义n=k+1时也成立.
综上可知:命题定义任意n∈N*都成立.
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),
∴xn-xn-1=(x2-x1)•λn-2=λn-2,
∴xn=(xn-xn-1)+(xn-1-xn-2)+…+(x3-x2)+(x2-x1)+x1
=λn-2+λn-3+…+λ+1+1=
+1.(0<λ<1).
∴x2k=
+1.
∴x2k-xk=
∴左边=(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk)
=
[(λ+λ3+…+λ2k-1)-(λ+λ2+…+λk)]
=
[
-
]
=
=
•
<
.=右边.
故不等式成立.
∴x3=(λ+1)x2-λx1=2(λ+1)-λ=λ+2.
x4=(λ+1)(λ+2)-2λ=λ2+λ+2.
x5=(λ+1)(λ2+λ+2)-λ(λ+2)=λ3+λ2+λ+2.
∵x1,x3,x5成等比数列,∴
x | 2 3 |
∴(λ+2)2=1×(λ2+λ+2),解得λ=-2.
(2)下面利用数学归纳法证明:
①当n=1时,x2-x1=2-1=y2-y1,∴x2-y2≤x1-y1成立;
②假设当n=k时,xk+1-xk≤yk+1-yk成立,即xk+1-yk+1≤xk-yk成立.
则当n=k+1时,∵λ>0,∴xk+2-xk+1=λ(xk+1-xk)≤λ(yk+1-yk)≤yk+2-yk+1成立,
即xk+2-yk+2≤xk+1-yk+1成立.
即命题定义n=k+1时也成立.
综上可知:命题定义任意n∈N*都成立.
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),
∴xn-xn-1=(x2-x1)•λn-2=λn-2,
∴xn=(xn-xn-1)+(xn-1-xn-2)+…+(x3-x2)+(x2-x1)+x1
=λn-2+λn-3+…+λ+1+1=
λn-1-1 |
λ-1 |
∴x2k=
λ2k-1-1 |
λ-1 |
∴x2k-xk=
λ2k-1-λk |
λ-1 |
∴左边=(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk)
=
1 |
λ-1 |
=
1 |
λ-1 |
λ(λ2k-1) |
λ2-1 |
λk-1 |
λ-1 |
=
1 |
1-λ |
(1-λk)(1-λk+1) |
1-λ2 |
=
1 |
(1-λ)2 |
(1-λk)(1-λk+1) |
1+λ |
1 |
(1-λ)2 |
故不等式成立.
点评:熟练掌握等比数列的定义、通项公式、前n项和公式、数学归纳法、“累加求和”等是解题的关键.
练习册系列答案
相关题目