题目内容
(本题12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得分,没有命中得分;向乙靶射击两次,每次命中的概率为,每命中一次得分,没有命中得分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分的分布列及数学期望.
(1);(2)分布列见解析,数学期望。
解析试题分析:(1)记“该射手恰好命中一次”为事件,“该射手射击甲靶命中”为事件,“该射手第一次射击乙靶命中”为事件,“该射手第二次射击乙靶命中”为事件.由题意知, .
由于,
所以 6分
(Ⅱ)根据题意,的所有可能取值为 7分
,
10分
所以的分布列为
12分
考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;随机变量的分布列和数学期望。
点评:本题主要考查了离散型随机变量的期望,以及分布列和事件的对立性和互斥性,同时考查了计算能力和分析问题的能力,属于中档题。在计算分布列时,要注意考虑周全,不要遗漏情况。
练习册系列答案
相关题目
一车间生产A, B, C三种样式的LED节能灯,每种样式均有10W和30W两种型号,某天的产量如右表(单位:个)。按样式分层抽样的方法在这个月生产的灯泡中抽取100个,其中有A样式灯泡25个.
型号 | A样式 | B样式 | C样式 |
10W | 2000 | z | 3000 |
30W | 3000 | 4500 | 5000 |
(1)求z的值;
(2)用分层抽样的方法在A样式灯泡中抽取一个容量为5的样本,从这个样本中任取2个灯泡,求至少有1个10W的概率.
(本小题共12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
| “厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(Ⅱ)试估计生活垃圾投放错误的概率;
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.
(注:,其中为数据的平均数)