题目内容
已知函数其中为参数,且
(I)当时,判断函数是否有极值;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
(I)解:当时,则在内是增函数,故无极值。
(II)解:令得
由及(I),只需考虑的情况。
当变化时,的符号及的变化情况如下表:
| 0 |
|
|
| |
| + | 0 | - | 0 | + |
| 极大值 | 极小值 |
因此,函数在处取得极小值 且
。
要使必有可得所以
(III)解:由(II)知,函数在区间与内都是增函数。
由题设,函数在内是增函数,则须满足不等式组
或
由(II),参数时,要使不等式关于参数恒成立,必有
综上,解得或所以的取值范围是
练习册系列答案
相关题目
已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.
【解析】第一问中,当时,,.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵,,
∴原不等式等价于:,
即, 亦即
分离参数的思想求解参数的范围
解:(Ⅰ)当时,,.
当在上变化时,,的变化情况如下表:
|
- |
+ |
|
||
1/e |
∴时,,.
(Ⅱ)∵,,
∴原不等式等价于:,
即, 亦即.
∴对于任意的,原不等式恒成立,等价于对恒成立,
∵对于任意的时, (当且仅当时取等号).
∴只需,即,解之得或.
因此,的取值范围是