题目内容

(1)已知2<x<3,-2<y<-1,求x+y、x-y、xy的取值范围;
(2)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.
分析:(1)直接利用不等式的基本性质,通过2<x<3,-2<y<-1,求x+y、x-y、xy的取值范围;
(2)利用作差法直接比较两个表达式的大小即可.
解答:解:(1)因为2<x<3,-2<y<-1,
所以0<x+y<2;1<-y<2,
3<x-y<5;
∴2<-xy<6,
∴-6<xy<-2;
所以x+y、x-y、xy的取值范围分别是(0,2),(3,5),(-6,-2).
(2)(x2+y2)(x-y)-(x2-y2)(x+y)
=x3-x2y+xy2-y3-x3-x2y+xy2+y3
=2xy2-2x2y
=2xy(y-x)
∵x<y<0∴xy>0,y-x>0,
∴2xy(y-x)>0,
∴(x2+y2)(x-y)>(x2-y2)(x+y)
点评:本题考查不等式的基本性质的应用,作差法比较大小的方法的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网