题目内容
长方体的过一个顶点的三条棱长的比是1:2:3,对角线长为,则这个长方体的体积为( )
A.6 | B.12 | C.24 | D.48 |
D
解析考点:棱柱、棱锥、棱台的体积.
专题:计算题.
分析:先设出长方体的长宽高,然后根据对角线求出长宽高,最后根据长方体的体积公式求出所求即可.
解答:解:∵长方体的过一个顶点的三条棱长的比是1:2:3,
∴设三条棱长分别为k,2k,3k
则长方体的对角线长为=k=2
∴k=2
长方体的长宽高为6,4,2
∴这个长方体的体积为6×4×2=48
故答案为:48应选D
点评:本题主要考查了棱柱的对角线以及体积的求解,需熟练掌握有关公式,属于基础题.
练习册系列答案
相关题目
如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为
A. | B.12 | C.24 | D. |
一梯形直观图是一个如图所示的等腰梯形,且梯形OA/B/C/面积,则原梯形面积为
A.2 | B. | C.2 | D. 4 |
右图是一个空间几何体的三视图,如果直角三角形的直角
边长均为1,那么这个几何体的体积为 ( )
A.1 | B. |
C. | D. |