题目内容

在数列{an}中,a1=2,an+1=an+ln(1+
1
n
),则an=(  )
A、2+lnn
B、2+(n-1)lnn
C、2+nlnn
D、1+n+lnn
分析:把递推式整理,先整理对数的真数,通分变成
n+1
n
,用迭代法整理出结果,约分后选出正确选项.
解答:解:∵.a2=a1+ln(1+
1
1
)

a3=a2+ln(1+
1
2
)


an=an-1+ln(1+
1
n-1
)

a1+ln(
2
1
)(
3
2
)(
4
3
)…(
n
n-1
)=2+lnn

故选A
点评:数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n-1等,这种办法通常称迭代或递推.
了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网