题目内容
已知函数f(x)=x+
+b(x≠0),其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.
a |
x |
f′(x)=1-
,由导数的几何意义得f'(2)=3,于是a=-8.
由切点P(2,f(2))在直线y=3x+1上可得-2+b=7,解得b=9.
所以函数f(x)的解析式为f(x)=x-
+9.
a |
x2 |
由切点P(2,f(2))在直线y=3x+1上可得-2+b=7,解得b=9.
所以函数f(x)的解析式为f(x)=x-
8 |
x |
练习册系列答案
相关题目