题目内容

精英家教网选修4-1:几何证明选讲
如图,设直线l切圆O于点P,AB为圆O的任意一条不与l垂直的直径,AC⊥l,BD⊥l,垂足分别为C,D.求证:PC=PD,且AP平分∠CAB.
分析:连结OP,可得OP⊥l,结合题意AC⊥l且BD⊥l,得OP∥AC∥BD,再由平行线的性质结合OA=OB证出PC=PD.△OPA中根据OA=OP得∠OAP=∠APO,由AC∥OP得∠PAC=∠APO,可得∠PAC=∠OAP,即AP平分∠CAB.
解答:精英家教网证明:连结OP,
∵直线l与圆O相切于P点,
∴OP⊥l
∵AC⊥l,BD⊥l,
∴OP∥AC∥BD,
∵OA=OB,∴PC=PD,
∵OA=OP,∴∠OAP=∠APO
∵AC∥OP,得∠PAC=∠APO,
∴∠PAC=∠OAP,即AP平分∠CAB.
点评:本题给出过直径的两端作圆的切线的垂线,求证切点到两个垂足的距离相等,并且证明角相等.着重考查了圆的切线的性质定理、平行线的性质和等腰三角形的性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网