题目内容
【题目】在直角坐标系xoy中,直线的参数方程为 (t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为 .
(1)求曲线C的直角坐标方程,并指出其表示何种曲线;
(2)设直线l与曲线C交于A,B两点,若点P的直角坐标为(1,0),试求当 时,|PA|+|PB|的值.
【答案】
(1)解:曲线C2: ,可以化为 ,ρ2=2ρcosθ﹣2ρsinθ,
因此,曲线C的直角坐标方程为x2+y2﹣2x+2y=0
它表示以(1,﹣1)为圆心、 为半径的圆
(2)解:当 时,直线的参数方程为 (为参数)
点P(1,0)在直线上,且在圆C内,把
代入x2+y2﹣2x+2y=0中得
设两个实数根为t1,t2,则A,B两点所对应的参数为t1,t2,
则 ,t1t2=﹣1)∴
【解析】(1)曲线C2: ,可以化为 ,ρ2=2ρcosθ﹣2ρsinθ,可得曲线C的直角坐标方程,并指出其表示何种曲线;(2)当 时,直线的参数方程为 (为参数),利用参数的几何意义求当 时,|PA|+|PB|的值.
练习册系列答案
相关题目
【题目】现有1 000根某品种的棉花纤维,从中随机抽取50根,纤维长度(单位:mm)的数据分组及各组的频数见右上表,据此估计这1 000根中纤维长度不小于37.5 mm的根数是 .
纤维长度 | 频数 |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |