题目内容
【题目】设数列{an}各项为正数,且a2=4a1 , an+1= +2an(n∈N*)
(I)证明:数列{log3(1+an)}为等比数列;
(Ⅱ)令bn=log3(1+a2n﹣1),数列{bn}的前n项和为Tn , 求使Tn>345成立时n的最小值.
【答案】(I)证明:∵a2=4a1 , an+1= +2an(n∈N*),∴a2=4a1 , a2= ,解得a1=2,a2=8.
∴an+1+1= +2an+1= ,
两边取对数可得:log3(1+an+1)=2log3(1+an),
∴数列{log3(1+an)}为等比数列,首项为1,公比为2.
(II)解:由(I)可得:log3(1+an)=2n﹣1 ,
∴bn=log3(1+a2n﹣1)=22n﹣2=4n﹣1 ,
∴数列{bn}的前n项和为Tn= = .
不等式Tn>345,
化为 >345,即4n>1036.
解得n>5.
∴使Tn>345成立时n的最小值为6
【解析】(I)由a2=4a1 , an+1= +2an(n∈N*),可得a2=4a1 , a2= ,解得a1 , a2 . 由于an+1+1= +2an+1= ,两边取对数可得:log3(1+an+1)=2log3(1+an),即可证明.(II)由(I)可得:log3(1+an)=2n﹣1 , 可得bn=log3(1+a2n﹣1)=22n﹣2=4n﹣1 , 可得数列{bn}的前n项和为Tn , 代入化简即可得出.
【考点精析】根据题目的已知条件,利用等比数列的通项公式(及其变式)和数列的前n项和的相关知识可以得到问题的答案,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系.
【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设cn=anbn , 求{cn}的前n项和Sn .
【题目】为了解市民在购买食物时看营养说明与性别的关系,现在社会上随机询问了100名市民,得到如下2×2列联表:
(1)是否有95%的把握认为:“性别与读营养说明有关系”,并说明理由;
(2)把频率当概率,若从社会上的男性市民中随机抽取3位,记这3位中读营养说明的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).
男性 | 女性 | 总计 | |
读营养说明 | 40 | 20 | 60 |
不读营养说明 | 20 | 20 | 40 |
总计 | 60 | 40 | 100 |
参考公式和数据:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |