题目内容
设y=f(x)是一次函数,若f(0)=1且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2)=
3n+2n2
3n+2n2
.分析:由已知可以假设一次函数为y=kx+1,在根据f(1),f(4),f(13)成等比数列,得出k=3,再利用等差数列的求和公式求解即可.
解答:解:由已知可得,f(x)=kx+b,(k≠0),
∵f(0)=1=k×0+b,∴b=1.
∵f(1),f(4),f(13)成等比数列,且f(1)=k+1,f(4)=4k+1,f(13)=13k+1.
∴k+1,4k+1,13k+1成等比数列,即(4k+1)2=(k+1)(13k+1),
16k2+1+8k=13k2+14k+1,从而解得k=0(舍去),k=2,
f(2)+f(4)+…+f(2n)
=(2×2+1)+(4×2+1)+…+(2n×2+1)
=(2+4+…+2n)×2+n
=4×
+n
=2n(n+1)+n
=3n+2n2,
故答案为3n+2n2.
∵f(0)=1=k×0+b,∴b=1.
∵f(1),f(4),f(13)成等比数列,且f(1)=k+1,f(4)=4k+1,f(13)=13k+1.
∴k+1,4k+1,13k+1成等比数列,即(4k+1)2=(k+1)(13k+1),
16k2+1+8k=13k2+14k+1,从而解得k=0(舍去),k=2,
f(2)+f(4)+…+f(2n)
=(2×2+1)+(4×2+1)+…+(2n×2+1)
=(2+4+…+2n)×2+n
=4×
n(n+1) |
2 |
=2n(n+1)+n
=3n+2n2,
故答案为3n+2n2.
点评:本题考查了等比数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.
练习册系列答案
相关题目