题目内容
设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是( )A.α⊥β,α∩β=l,m⊥l
B.α∩γ=m,α⊥γ,β⊥γ
C.α⊥γ,β⊥γ,m⊥α
D.n⊥α,n⊥β,m⊥α
【答案】分析:根据面面垂直的判定定理可知选项A是否正确,根据平面α与平面β的位置关系进行判定可知选项B和C是否正确,根据垂直于同一直线的两平面平行,以及与两平行平面中一个垂直则垂直于另一个平面,可知选项D正确.
解答:解:α⊥β,α∩β=l,m⊥l,根据面面垂直的判定定理可知,缺少条件m?α,故不正确;
α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
n⊥α,n⊥β,⇒α∥β,而m⊥α,则m⊥β,故正确
故选D
点评:本小题主要考查空间线面关系、面面关系以及充分条件的判定等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.
解答:解:α⊥β,α∩β=l,m⊥l,根据面面垂直的判定定理可知,缺少条件m?α,故不正确;
α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
n⊥α,n⊥β,⇒α∥β,而m⊥α,则m⊥β,故正确
故选D
点评:本小题主要考查空间线面关系、面面关系以及充分条件的判定等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.
练习册系列答案
相关题目