题目内容

已知{an}是公比为2的等比数列,若a3-a1=6,则
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
=
1
3
(1-
1
4n
)
1
3
(1-
1
4n
)
分析:根据已知条件求出等比数列{an}的通项公式,然后求出数列{
1
an2
}的通项公式,最后运用等比数列的求和公式求解.
解答:解:设数列{an}的公比为q,则q=2,
由a3-a1=6,得:a1q2-a1=6,即3a1=6,所以,a1=2.
所以,an=a1qn-1=2×2n-1=2n
1
an2
=
1
4n

所以,则
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n

=
1
4
+
1
42
+
1
43
+…+
1
4n

=
1
4
(1-
1
4n
)
1-
1
4

=
1
3
(1-
1
4n
)

故答案为
1
3
(1-
1
4n
)
点评:本题考查了等比数列的通项公式和求和公式,考查了学生的计算能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网