题目内容

在△ABC中
a+b
a-b
等于(  )
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2
分析:先利用正弦定理把边转换成角的问题,再利用和差化积公式求得结果.
解答:解:根据正弦定理可知
a+b
a-b
=
sinA+sinB
sinA-sinB
=
2sin
A+B
2
cos
A-B
2
2cos
A+B
2
sin
A-B
2
=
tan
A+B
2
tan
A-B
2

故选D
点评:本题主要考查了正弦定理的应用.涉及了三角函数中的和差化积公式和同角三角函数关系.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网