题目内容
若
=(x1,y1),
=(x2,y2),定义:
•
=x1x2+y1y2,已知
=(2cosx,1),
=(cosx,
sin2x),f(x)=
•
,x∈R
(1)若f(x)=1-
,且x∈[-
,
],求x;
(2)若函数y=2sin2x的图象向左(或右)平移|m|(|m|<
)个单位,再向上(或下)平移|n|个单位后得到函数y=f(x)的图象,求实数m,n的值.
a |
b |
a |
b |
a |
b |
3 |
a |
b |
(1)若f(x)=1-
3 |
π |
3 |
π |
3 |
(2)若函数y=2sin2x的图象向左(或右)平移|m|(|m|<
π |
2 |
分析:(1)利用倍角公式和两角和的正弦公式及其角所在象限的符号即可得出;
(2)利用三角函数变换法则即可得出.
(2)利用三角函数变换法则即可得出.
解答:解:(1)f(x)=2cos2x+
sin2x
=1+cos2x+
sin2x
=2sin(2x+
)+1=1-
,
∴sin(2x+
)=-
.
∵x∈[-
,
],
∴(2x+
)∈[-
,
].
∴2x+
=-
,解得x=-
.
(2)把函数y=2sin2x的图象向左平移
个单位,再向上平移1个单位即可得出f(x)=2sin2(x+
)+1=2sin(2x+
)+1.
∴m=-
,n=1.
3 |
=1+cos2x+
3 |
=2sin(2x+
π |
6 |
3 |
∴sin(2x+
π |
6 |
| ||
2 |
∵x∈[-
π |
3 |
π |
3 |
∴(2x+
π |
6 |
π |
2 |
5π |
6 |
∴2x+
π |
6 |
π |
3 |
π |
4 |
(2)把函数y=2sin2x的图象向左平移
π |
12 |
π |
12 |
π |
6 |
∴m=-
π |
12 |
点评:熟练掌握三角函数的图象与性质、倍角公式及其三角函数变换等是解题的关键.
练习册系列答案
相关题目
若
=(x1,y1),
=(x2,y2),且
∥
,则有( )
a |
b |
a |
b |
A、x1y2+x2y1=0 |
B、x1y2-x2y1=0, |
C、x1x2+y1y2=0 |
D、x1x2-y1y2=0 |