题目内容
已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为________.
如图所示,由题意知,在棱锥S-ABC中,△SAC,△SBC都是等腰直角三角形,其中AB=2,SC=4,SA=AC=SB=BC=2.取SC的中点D,易证SC垂直于面ABD,因此棱锥SABC的体积为两个棱锥S-ABD和C-ABD的体积和,所以棱锥S-ABC的体积V=SC·S△ADB=×4×=
练习册系列答案
相关题目
题目内容