题目内容
△ABC的角A、B、C的对边分别为a、b、c,m |
n |
m |
n |
(Ⅰ)求角A的大小;
(Ⅱ)当y=2sin2B+sin(2B+
π |
6 |
分析:(Ⅰ)根据平面向量垂直时平面向量的数量积为0,得到一个关系式,利用正弦定理及两角和的正弦函数公式化简,再利用诱导公式及sinB不为0,得到cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数;
(Ⅱ)把所求的式子利用二倍角的饿余弦函数公式及两角和的正弦函数公式化简,再利用两角差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围求出这个角的范围,根据正弦函数的图象与性质即可得到正弦函数的最大值进而得到y的最大值.
(Ⅱ)把所求的式子利用二倍角的饿余弦函数公式及两角和的正弦函数公式化简,再利用两角差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围求出这个角的范围,根据正弦函数的图象与性质即可得到正弦函数的最大值进而得到y的最大值.
解答:解:(Ⅰ)由
⊥
,得
•
=0,从而(2b-c)cosA-acosC=0,(2分)
由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0
∴2sinBcosA-sin(A+C)=0,2sinBcosA-sinB=0,
∵A、B∈(0,π),∴sinB≠0,cosA=
,故A=
.(5分)
(Ⅱ)y=2sin2B+2sin(2B+
)=(1-cos2B)+sin2Bcos
+cos2Bsin
=1+
sin2B-
cos2B=1+sin(2B-
).(8分)
由(Ⅰ)得,0<B<
,-
<2B-
<
,
∴当2B-
=
,即B=
时,y取最大值2.(10分)
m |
n |
m |
n |
由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0
∴2sinBcosA-sin(A+C)=0,2sinBcosA-sinB=0,
∵A、B∈(0,π),∴sinB≠0,cosA=
1 |
2 |
π |
3 |
(Ⅱ)y=2sin2B+2sin(2B+
π |
6 |
π |
6 |
π |
6 |
=1+
| ||
2 |
1 |
2 |
π |
6 |
由(Ⅰ)得,0<B<
2π |
3 |
π |
6 |
π |
6 |
7π |
6 |
∴当2B-
π |
6 |
π |
2 |
π |
3 |
点评:此题考查学生掌握平面向量垂直时满足的条件及平面向量的数量积的运算法则,灵活运用两角和与差的正弦函数公式及二倍角的余弦函数公式化简求值,掌握正弦函数的单调区间,是一道中档题.
练习册系列答案
相关题目
若△ABC的角A,B,C对边分别为a、b、c,且a=1,∠B=45°,S△ABC=2,则b=( )
A、5 | ||
B、25 | ||
C、
| ||
D、5
|
△ABC的角A,B,C的对边分别为a,b,c,已知b=4,B=
,C=
,则c的长度是( )
π |
3 |
π |
4 |
A、
| ||||
B、2
| ||||
C、
| ||||
D、2
|