题目内容
7、设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:
①若m⊥n,m⊥α,n?α则n∥α;
②若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β;
③若m⊥n,m∥α,n∥β,则α⊥β;
④若n?α,m?β,α与β相交且不垂直,则n与m不垂直.
其中所有真命题的序号是
①若m⊥n,m⊥α,n?α则n∥α;
②若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β;
③若m⊥n,m∥α,n∥β,则α⊥β;
④若n?α,m?β,α与β相交且不垂直,则n与m不垂直.
其中所有真命题的序号是
①②
.分析:根据线面平行的判定方法,我们可判断①的真假,根据面面垂直的性质定理,我们易判断②的正误,根据面面垂直的判定方法及定义,我们可以判断命题③的真假,根据线线垂直的定义及面面相交的几何特征,我们可以判断④的对错,进而得到答案.
解答:解:若m⊥n,m⊥α,则n?α或n∥α,又由n?α则n∥α,故①为真命题;
若α⊥β,α∩β=m,n?α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,故②也为真命题;
若m⊥n,m∥α,则n与α可能平行也可能相交,再由n∥β,则α与β也可能平行也可能相交,故③为假命题;
若n?α,m?β,α与β相交且不垂直,当m,n中一条与交线平行,一条与交线垂直时,n⊥m,故④为假命题;
故答案为:①②
若α⊥β,α∩β=m,n?α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,故②也为真命题;
若m⊥n,m∥α,则n与α可能平行也可能相交,再由n∥β,则α与β也可能平行也可能相交,故③为假命题;
若n?α,m?β,α与β相交且不垂直,当m,n中一条与交线平行,一条与交线垂直时,n⊥m,故④为假命题;
故答案为:①②
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握这些定理及定义,熟练掌握空间线面关系的几何特征是解答此类问题的关键.
练习册系列答案
相关题目