题目内容
已知数列{an}:a1=1,a2=2,a3=r,an+3=an+2(n是正整数),与数列{bn}:b1=1,b2=0,b3=-1,b4=0,bn+4=bn(n是正整数).记Tn=b1a1+b2a2+b3a3+…+bnan.
(1)若a1+a2+a3+…+a12=64,求r的值;
(2)求证:当n是正整数时,T12n=-4n;
(3)已知r>0,且存在正整数m,使得在T12m+1,T12m+2,…,T12m+12中有4项为100,求r的值,并指出哪4项为100.
(1)解:a1+a2+a3…+a12
=1+2+r+3+4+(r+2)+5+6+(r+4)+7+8+(r+6)
=48+4r.
∵48+4r=64,∴r=4.
(2)证明:用数学归纳法证明:当n∈Z+时,T12n=-4n.
①当n=1时,T12=a1-a3+a5-a7+a9-a11=-4,等式成立.
②假设n=k时等式成立,即T12k=-4k,
那么当n=k+1时,
T12(k+1)=T12k+a12k+1-a12k+3+a12k+5-a12k+7+a12k+9-a12k+11
=-4k+(8k+1)-(8k+r)+(8k+4)-(8k+5)+(8k+r+4)-(8k+8)
=-4k-4=-4(k+1),等式也成立.
根据①和②可以断定:当n∈Z+时,T12n=-4n.
(3)解:T12m=-4m(m≥1).
当n=12m+1,12m+2时,Tn=4m+1;
当n=12m+3,12m+4时,Tn=-4m+1-r;
当n=12m+5,12m+6时,Tn=4m+5-r;
当n=12m+7,12m+8时,Tn=-4m-r;
当n=12m+9,12m+10时,Tn=4m+4;
当n=12m+11,12m+12时,Tn=-4m-4.
∵4m+1是奇数,-4m+1-r,-4m-r,-4m-4均为负数,
∴这些项均不可能取到100.
∴4m+5-r=4m+4=100,解得m=24,r=1.
此时T293,T294,T297,T298为100.