题目内容

已知数列{an}:a1=1,a2=2,a3=r,an+3=an+2(n是正整数),与数列{bn}:b1=1,b2=0,b3=-1,b4=0,bn+4=bn(n是正整数).

记Tn=b1a1+b2a2+b3a3+…+bnan.

(1)若a1+a2+a3+…+a12=64,求r的值;

(2)求证:当n是正整数时,T12n=-4n;

(3)已知r>0,且存在正整数m,使得在T12m+1,T12m+2,…,T12m+12中有4项为100,求r的值,并指出哪4项为100.

(1)解:a1+a2+a3…+a12

=1+2+r+3+4+(r+2)+5+6+(r+4)+7+8+(r+6)

=48+4r.                                                                     

∵48+4r=64,∴r=4.                                                           

(2)证明:用数学归纳法证明:当n∈Z+时,T12n=-4n.

①当n=1时,T12=a1-a3+a5-a7+a9-a11=-4,等式成立.                                  

②假设n=k时等式成立,即T12k=-4k,

那么当n=k+1时,

T12(k+1)=T12k+a12k+1-a12k+3+a12k+5-a12k+7+a12k+9-a12k+11                                 

=-4k+(8k+1)-(8k+r)+(8k+4)-(8k+5)+(8k+r+4)-(8k+8)

=-4k-4=-4(k+1),等式也成立.

根据①和②可以断定:当n∈Z+时,T12n=-4n.                                      

(3)解:T12m=-4m(m≥1).

当n=12m+1,12m+2时,Tn=4m+1;

当n=12m+3,12m+4时,Tn=-4m+1-r;

当n=12m+5,12m+6时,Tn=4m+5-r;

当n=12m+7,12m+8时,Tn=-4m-r;

当n=12m+9,12m+10时,Tn=4m+4;

当n=12m+11,12m+12时,Tn=-4m-4.                                            

∵4m+1是奇数,-4m+1-r,-4m-r,-4m-4均为负数,

∴这些项均不可能取到100.                                                   

∴4m+5-r=4m+4=100,解得m=24,r=1.

此时T293,T294,T297,T298为100.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网