题目内容

已知函数f(x)=x2+2cosx,则关于x的方程数学公式的所有实根之和为


  1. A.
    0
  2. B.
    -2
  3. C.
    -4
  4. D.
    -6
C
分析:求导函数,确定函数的单调性,从而脱去函数符号,利用韦达定理,即可求得结论.
解答:求导函数可得:f′(x)=2x-2sinx
当x≥0时,f′(x)≥0,∴f(x)在[0,+∞)上递增
∵f(-x)=f(x),∴函数为偶函数,
∴方程等价于
∴x2+x-1=0或x2+3x+1=0
∴方程所有实根之和为-4
故选C.
点评:本题考查导数知识的运用,考查函数的单调性,解题的关键是转化为具体方程,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网