题目内容
已知函数,若|f(x)|≥ax,则a的取值范围是( )
A.(-∞,0] | B.(-∞,1] |
C.[-2,1] | D.[-2,0] |
D
函数y=|f(x)|的图象如图.
①当a=0时,|f(x)|≥ax显然成立.
②当a>0时,只需在x>0时,
ln(x+1)≥ax成立.
比较对数函数与一次函数y=ax的增长速度.
显然不存在a>0使ln(x+1)≥ax在x>0上恒成立.
③当a<0时,只需在x<0时,x2-2x≥ax成立.
即a≥x-2成立,∴a≥-2.
综上所述:-2≤a≤0.故选D.
练习册系列答案
相关题目