题目内容

设{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是以函数y=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an-bn}的前n项和Sn
分析:(Ⅰ)等差数列中,由a1=2,a3=a22-10,利用等差数列的通项公式列出方程组,求出公差,由此能求出{an}的通项公式.
(Ⅱ)由y=4sin2πx=4×
1-cos2πx
2
=-2cos2πx+2,其最小正周期为
=1,故首项为1,由公比q=3,知bn=3n-1,由此能求出数列{an-bn}的前n项和Sn
解答:解:(Ⅰ)设数列{an}的公差为d,
a1=2
a1+2d=(a1+d)2-10

解得d=2或d=-4(舍),
∴an=2+(n-1)×2=2n.
(Ⅱ)∵y=4sin2πx=4×
1-cos2πx
2
=-2cos2πx+2,
其最小正周期为
=1,
故首项为1,
∵公比q=3,∴bn=3n-1
∴an-bn=2n-3n-1
Sn=(2-30)+(4-31)+…+(2n-3n-1)
=
(2+2n)n
2
-
1-3n
1-3

=n2+n+
1
2
-
1
2
•3n
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网