题目内容

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,
CD
CC1
.(λ∈R)
(Ⅰ)当λ=
1
2
时,求证AB1⊥平面A1BD;
(Ⅱ)当二面角A-A1D-B的大小为
π
3
时,求实数λ的值.
分析:(Ⅰ)由三棱柱ABC-A1B1C1为正三棱柱,取BC边的中点O,连结AO,可证AO垂直于底面,以O为坐标原点建立空间直角坐标系,由已知求出各点的坐标,得到向量
AB1
DA1
DB
的坐标,由向量的数量积等于0可证AB1⊥平面A1BD;
(Ⅱ)把D点的坐标用含有λ的代数式表示,求出二面角A-A1D-B的两个面的法向量,利用法向量所成的角为
π
3
即可得到λ的值.
解答:(Ⅰ)证明:取BC的中点为O,连结AO
在正三棱柱ABC-A1B1C1中,面ABC⊥面CB1,△ABC为正三角形,所以AO⊥BC,
故AO⊥平面CB1
以O为坐标原点建立如图空间直角坐标系O-xyz.
A(0,0,
3
)
,B1(1,2,0),D(-1,1,0),A1(0,2,
3
)
,B(1,0,0).
所以
AB1
=(1,2,-
3
)
DA1
=(1,1,
3
)
DB
=(2,-1,0)

因为
AB1
DA1
=1+2-3=0,
AB1
DB
=2-2=0

所以AB1⊥DA1,AB1⊥DB,又DA1∩DB=D,
所以AB1⊥平面A1BD;
(Ⅱ)解:由(1)得D(-1,2λ,0),所以
DA1
=(1,2-2λ,
3
)
DB
=(2,-2λ,0)
DA
=(1,-2λ,
3
)

设平面A1BD的法向量
n1
=(x,y,z)
,平面AA1D的法向量
n2
=(s,t,u)

n1
DA1
=0
n1
DB
=0
,得
x+(2-2λ)y+
3
z=0
2x-2λy=0
,取y=1,得x=λ,z=
λ-2
3

所以平面A1BD的一个法向量为
n1
=(λ,1,
λ-2
3
)

n2
DA1
=0
n2
DA
=0
,得
s+(2-2λ)t+
3
u=0
s-2λt+
3
u=0
,取u=-1,得x=
3
,y=0.
所以平面AA1D的一个法向量
n2
=(
3
,0,-1)

cos<
n1
n2
>=
n1
n2
|
n1
|•|
n2
|
=
1
2
,得
3
λ-
λ-2
3
λ2+12+(
λ-2
3
)2
(
3
)2+(-1)2
=
1
2

解得λ=
1
4
,为所求.
点评:本题考查了直线与平面垂直的判定,考查了二面角的平面角.训练了利用平面法向量求二面角的大小,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网