题目内容
已知函数f(x)=x(x-a)(x-b),其中0<a<b.(1)设f(x)在x=s和x=t处取得极值,其中s<t,求证:0<s<a<t<b;
(2)设A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上;
(3)若a+b<2
2 |
分析:(1)根据函数的极值点出导数为0,知,极值点是导数等于零的根,所以先求导,再解导数等于零,两根为s,t,再判断x=a,b时导数的正负,比较大小即可.
(2)求出AB的中点坐标,再代入y=f(x),判断是否成立即可.
(3)如果两条切线互相垂直,则斜率乘积等于-1,所以要证两条切线不可能垂直,只需证明它们斜率之积不等于-1即可,利用曲线的切线斜率是该点处的导数来计算.
(2)求出AB的中点坐标,再代入y=f(x),判断是否成立即可.
(3)如果两条切线互相垂直,则斜率乘积等于-1,所以要证两条切线不可能垂直,只需证明它们斜率之积不等于-1即可,利用曲线的切线斜率是该点处的导数来计算.
解答:解:(1)f(x)=x3-(a+b)x2+abx,∴f'(x)=3x2-2(a+b)x+ab=0的两根为s,t,
令f'(x)=g(x),∵0<a<b,∴g(0)=ab>0,g(a)=a(a-b)<0,g(b)=b(b-a)>0,
故有0<s<a<t<b.
(2)设AB中点C(x0,y0),则x0=
,y0=
,
故有s+t=
,st=
,∴x0=
,f(s)+f(t)=(s3+t3)-(a+b)(s2+t2)+ab(s+t)=-
(a+b)3+
ab(a+b).
∴y0=-
(a+b)3+
ab(a+b).
代入验算可知C在曲线y=f(x)上.
(3)过曲线上的点(x1,y1)的切线的斜率是31x2-2(a+b)x1+ab,
当x1=0时,切线的斜率k1=ab;
当x1≠0时,3x12-2(a+b)x1+ab=
=(x1-a)(x1-b),∴x1=
,
∴切线斜率k2=-
(a+b)2+ab.
∵0<a+b<2
,∴
(a+b)2∈(0,2),∴k2>(ab-2)
∴k1k2=abk2>ab(ab-2)=(ab-1)2-1≥-1
∴k1k2≠-1,故过原点且与曲线相切的两条直线不可能垂直.
令f'(x)=g(x),∵0<a<b,∴g(0)=ab>0,g(a)=a(a-b)<0,g(b)=b(b-a)>0,
故有0<s<a<t<b.
(2)设AB中点C(x0,y0),则x0=
s+t |
2 |
f(s)+f(t) |
2 |
故有s+t=
2(a+b) |
3 |
ab |
3 |
a+b |
3 |
4 |
27 |
2 |
3 |
∴y0=-
2 |
27 |
1 |
3 |
代入验算可知C在曲线y=f(x)上.
(3)过曲线上的点(x1,y1)的切线的斜率是31x2-2(a+b)x1+ab,
当x1=0时,切线的斜率k1=ab;
当x1≠0时,3x12-2(a+b)x1+ab=
y1 |
x1 |
a+b |
2 |
∴切线斜率k2=-
1 |
4 |
∵0<a+b<2
2 |
1 |
4 |
∴k1k2=abk2>ab(ab-2)=(ab-1)2-1≥-1
∴k1k2≠-1,故过原点且与曲线相切的两条直线不可能垂直.
点评:本题主要考查导数,切线极值 知识,属于基础知识,基本运算的考查.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|