题目内容

函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,且对于任意,则( )
A.函数y=f(x+1)一定是周期为4的偶函数
B.函数y=f(x+1)一定是周期为2的奇函数
C.函数y=f(x+1)一定是周期为4的奇函数
D.函数y=f(x+1)一定是周期为2的偶函数
【答案】分析:利用已知条件判断函数的单调性,求出函数的最值,推出函数的周期,即可得到正确选项.
解答:解:因为函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,
且对于任意
即函数y=f(x)在[-1,1]上是单调增函数,
∴f(x+1)在x=0和x=-2处分别取得最大值和最小值,即函数的周期是T=2×[0-(-2)]=4,
函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,
所以φ=0,函数f(x)=Asinωx是奇函数,x=1是对称轴,
函数向左平移1单位,得到函数f(x+1),它的对称轴是y轴,
∴函数y=f(x+1)一定是周期为4的偶函数.
故选A.
点评:本题考查函数的单调性以及函数的周期的求法,考查逻辑推理能力计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网