题目内容
如图,给出定点A(a,0) (a>0,a≠1)和直线l:x=-1,B是直线l上的动点,∠BOA的角平分线交AB于点C,求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.
答案见解析
解析:
解法一:依题意,记B(-1,b) (b∈R),则直线OA和OB的方程分别为y=0和y=-bx.设点C(x,y),则有0≤x<a,由OC平分∠AOB,知点C到OA、OB距离相等.根据点到直线的距离公式得. ① ——4分
依题设,点C在直线AB上,故有
. ——6分
由 x-a≠0,得 . ②
将②式代入①代得
,
整理得y2[(1-a)x2-2ax+(1+a)y2]=0. ——9分
若y≠0,则(1-a)x2-2ax+(1+a)y2=0 (0<x<a);
若y=0,则b=0,∠AOB=π,点C的坐标为(0,0),满足上式.
综上得点C的轨迹方程为
(1-a)x2-2ax+(1+a)y2=0 (0≤x<a). ——10分
∵ a≠1,
∴ (0≤x<a). ③ ——12分
由此知,当0<a<1时,方程③表示椭圆弧段;
当a>1时,方程③表示双曲线一支的弧段. ——14分
解法二:如图,设D是l与x轴的交点,过点C作CE⊥x轴,E是垂足.
(ⅰ)当|BD|≠0时,设点C(x,y),则0<x<a,y≠0.
由CE∥BD得 . ——3分
∵ ∠COA=∠COB=∠COD-∠BOD=π-∠COA-∠BOD,
∴ 2∠COA=π-∠BOD.
∵ ——6分
.
∴
整理得(1-a)x2-2ax+(1+a)y2=0 (0<x<a). ——9分
(ⅱ) 当|BD|=0时,∠BOA=π,则点C的坐标为 (0,0),满足上式.
综合(ⅰ),(ⅱ),得点C的轨迹方程为
(1-a)x2-2ax+(1+a)y2=0 (0≤x<a). ——10分
以下同解法一.