题目内容
已知椭圆的离心率为,椭圆上的点到右焦点F的最大距离为5;(1)求椭圆的方程;
(2)设过右焦点F的直线与椭圆交于A、B两点,且线段AB的中点M在直线l:x=t(t>2)上的射影为N,若,求t的取值范围.
【答案】分析:(1)由椭圆的离心率为,得=,由椭圆上的点到右焦点F的最大距离为5,得a+c=5,再由a,b,c的关系式,就可解出a,b的值,得到椭圆方程.
(2)设出直线l的点斜式方程,与椭圆方程联立,解得x1+x2,x1x2,利用弦长公式求出|AB|长.因为M在直线l:x=t(t>2)上的射影为N,可求出|MN|的长,由M为线段AB的中点,可得|AB|=2|MN|,把前面求出的|AB|长与|MN|的长代入,就可得到关于k,t的等式,用k表示t,再根据k的范围求出t的范围即可.
解答:解:(1)依题意,得,解得,a=3,c=2,由b2=a2-c2,得b=,
∴椭圆方程为
(2)设直线AB方程为y=k(x-2),代入椭圆中,得
(9k2+5)x2-36k2x+36k2-45=0
∵直线与椭圆交于A、B两点,
有△(36k2)2-4(9k2+5)(36k2-45)=25×36(k2+1)>0
|AB|==
又由|MN|=t-=t-,又∵Rt△ABN中,M为斜边AB的中点,
∴|AB|=2|MN|,即=2t-
解得,t==
∵k2≥0,∴,
,
∴t的取值范围为[3,)
点评:本题主要考察了椭圆方程的求法,以及直线与椭圆相交时弦长公式的应用,分离变量求参数的取值范围,属于圆锥曲线的综合题.
(2)设出直线l的点斜式方程,与椭圆方程联立,解得x1+x2,x1x2,利用弦长公式求出|AB|长.因为M在直线l:x=t(t>2)上的射影为N,可求出|MN|的长,由M为线段AB的中点,可得|AB|=2|MN|,把前面求出的|AB|长与|MN|的长代入,就可得到关于k,t的等式,用k表示t,再根据k的范围求出t的范围即可.
解答:解:(1)依题意,得,解得,a=3,c=2,由b2=a2-c2,得b=,
∴椭圆方程为
(2)设直线AB方程为y=k(x-2),代入椭圆中,得
(9k2+5)x2-36k2x+36k2-45=0
∵直线与椭圆交于A、B两点,
有△(36k2)2-4(9k2+5)(36k2-45)=25×36(k2+1)>0
|AB|==
又由|MN|=t-=t-,又∵Rt△ABN中,M为斜边AB的中点,
∴|AB|=2|MN|,即=2t-
解得,t==
∵k2≥0,∴,
,
∴t的取值范围为[3,)
点评:本题主要考察了椭圆方程的求法,以及直线与椭圆相交时弦长公式的应用,分离变量求参数的取值范围,属于圆锥曲线的综合题.
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|